Quantcast
Channel: vcf — GATK-Forum
Viewing all articles
Browse latest Browse all 624

Unusual calls after using HaplotypeCaller - filtered with VQSR and refinement workflow

$
0
0

Hi,

I have discovered some unusual calls in my VCF file after using HaplotypeCaller. I am using version 3.3 of GATK. I applied VQSR as well as the genotype refinement workflow (CalculateGenotypePosteriors, etc.) to refine the calls, but the unusual calls did not get removed. I also calculated the number of Mendelian error just in the biallelic SNPs in my final VCF file (using PLINK) and found unusually high percentage for each of the 3 families I am studying: 0.153%, 0.167%, and 0.25%. The percentage of triallelic SNPs is also very high: 0.111%. Why are the error rates so high?

I used the following commands to call the variants and generate the initial VCF file:

HaplotypeCaller (generate gvcf files for each individual for each chromosome

java -Xmx1g -jar GenomeAnalysisTK.jar -T HaplotypeCaller -R hs37d5.fa -I recal_${ROOT}.bam -o ${outpath}raw_${ROOT}.vcf --emitRefConfidence GVCF --variant_index_type LINEAR --variant_index_parameter 128000

GenotypeGVCFs (generate vcf files for each chr)

java -Xmx1g -jar GenomeAnalysisTK.jar -R hs37d5.fa -T GenotypeGVCFs -V vcfs.chr${numchr}.new.list -o final_chr${numchr}.vcf -L ${numchr}

CatVariants (generate 1 vcf file with all inds and all chrs)

java -Xmx1g -cp GenomeAnalysisTK.jar org.broadinstitute.gatk.tools.CatVariants -R hs37d5.fa -V final.new.list -out final_allHutt.vcf -assumeSorted

VQSR

java -Xmx4g -jar GenomeAnalysisTK.jar -T VariantRecalibrator -R hs37d5.fa -input final_allHutt.vcf -resource:hapmap,known=false,training=true,truth=true,prior=15.0 hapmap_3.3.b37.vcf -resource:omni,known=false,training=true,truth=true,prior=12.0 1000G_omni2.5.b37.vcf -resource:1000G,known=false,training=true,truth=false,prior=10.0 1000G_phase1.snps.high_confidence.b37.vcf -resource:dbsnp,known=true,training=false,truth=false,prior=2.0 dbsnp_138.b37.vcf -an QD -an MQ -an MQRankSum -an ReadPosRankSum -an FS -an SOR -an DP -mode SNP -tranche 100.0 -tranche 99.9 -tranche 99.0 -tranche 90.0 --disable_auto_index_creation_and_locking_when_reading_rods -recalFile recalibrate_SNP_allHutt_2.recal -tranchesFile recalibrate_SNP_allHutt_2.tranches

Used excludeFiltered here

java -Xmx3g -jar GenomeAnalysisTK.jar -T ApplyRecalibration -R hs37d5.fa -input final_allHutt.vcf -mode SNP --ts_filter_level 99.9 --excludeFiltered --disable_auto_index_creation_and_locking_when_reading_rods -recalFile recalibrate_SNP_allHutt_2.recal -tranchesFile recalibrate_SNP_allHutt_2.tranches -o recalibrated_snps_raw_indels_allHutt_filteredout.vcf

java -Xmx3g -jar GenomeAnalysisTK.jar -T VariantRecalibrator -R hs37d5.fa -input recalibrated_snps_raw_indels_allHutt_filteredout.vcf -resource:mills,known=false,training=true,truth=true,prior=12.0 Mills_and_1000G_gold_standard.indels.b37.vcf -resource:dbsnp,known=true,training=false,truth=false,prior=2.0 dbsnp_138.b37.vcf -an QD -an DP -an FS -an SOR -an ReadPosRankSum -an MQRankSum -mode INDEL -tranche 100.0 -tranche 99.9 -tranche 99.0 -tranche 90.0 --maxGaussians 4 --disable_auto_index_creation_and_locking_when_reading_rods -recalFile recalibrate_INDEL_allHutt_filteredout.recal -tranchesFile recalibrate_INDEL_allHutt_filteredout.tranches

Used excludeFiltered here

java -Xmx3g -jar GenomeAnalysisTK.jar -T ApplyRecalibration -R hs37d5.fa -input recalibrated_snps_raw_indels_allHutt_filteredout.vcf -mode INDEL --ts_filter_level 99.0 --excludeFiltered --disable_auto_index_creation_and_locking_when_reading_rods -recalFile recalibrate_INDEL_allHutt_filteredout.recal -tranchesFile recalibrate_INDEL_allHutt_filteredout.tranches -o recalibrated_variants_allHutt_filteredout.vcf

Genotype Refinement Workflow

java -Xmx3g -jar GenomeAnalysisTK.jar -T CalculateGenotypePosteriors -R hs37d5.fa --supporting ALL.wgs.phase3_shapeit2_mvncall_integrated_v5.20130502.sites.vcf -ped Hutt.ped -V recalibrated_variants_allHutt_filteredout.vcf -o recalibrated_variants_allHutt.postCGP.f.vcf

java -Xmx3g -jar GenomeAnalysisTK.jar -T VariantFiltration -R hs37d5.fa -V recalibrated_variants_allHutt.postCGP.f.vcf -G_filter "GQ < 20.0" -G_filterName lowGQ -o recalibrated_variants_allHutt.postCGP.Gfiltered.f.vcf

Again, the first genotype in this example (indel) passed VariantFiltration even though its coverage was zero (2/2:0,0,0:0:PASS)

The entire example is below:

1 20199272 . T TCTTC,C 3520.08 PASS AC=8,22;AF=0.160,0.440;AN=50;BaseQRankSum=-1.356e+00;ClippingRankSum=-1.267e+00;DP=487;FS=4.843;GQ_MEAN=27.84;GQ_STDDEV=40.31;InbreedingCoeff=0.1002;MLEAC=1,12;MLEAF=0.020,0.240;MQ=51.74;MQ0=0;MQRankSum=0.421;NCC=2;PG=0,0,0,0,0,0;QD=32.53;ReadPosRankSum=1.27;SOR=0.699;VQSLOD=0.687;culprit=FS GT:AD:DP:FT:GQ:PGT:PID:PL:PP 2/2:0,0,0:0:PASS:22:.:.:410,207,355,32,22,0:410,207,355,32,22,0 2/2:0,0,1:1:lowGQ:5:.:.:240,51,36,18,5,0:240,51,36,18,5,0 0/2:4,0,4:8:PASS:90:.:.:140,153,256,0,103,90:140,153,256,0,103,90 0/0:22,0,0:22:lowGQ:0:.:.:0,0,390,0,390,390:0,0,390,0,390,390 0/0:2,0,0:2:lowGQ:3:.:.:0,3,45,3,45,45:0,3,45,3,45,45 2/2:0,0,3:3:lowGQ:11:.:.:287,135,124,21,11,0:287,135,124,21,11,0 ./.:7,0,0:7:PASS 2/2:0,0,3:4:lowGQ:11:.:.:282,126,115,22,11,0:282,126,115,22,11,0 0/2:10,0,0:10:lowGQ:5:.:.:27,5,494,0,411,405:27,5,494,0,411,405 0/2:7,0,0:7:lowGQ:13:.:.:13,15,502,0,303,288:13,15,502,0,303,288 0/1:8,6,0:14:PASS:99:.:.:194,0,255,218,273,491:194,0,255,218,273,491 0/0:18,0,0:18:PASS:52:.:.:0,52,755,52,755,755:0,52,755,52,755,755 2/2:0,0,0:0:PASS:23:.:.:305,168,416,23,30,0:305,168,416,23,30,0 0/2:0,0,4:4:lowGQ:14:.:.:40,14,634,0,185,699:40,14,634,0,185,699 0/0:19,0,0:19:PASS:58:.:.:0,58,824,58,824,824:0,58,824,58,824,824 0/0:1,0,0:1:lowGQ:6:0|1:20199257_CT_C:0,6,91,6,91,91:0,6,91,6,91,91 1/1:0,0,0:0:lowGQ:2:.:.:177,11,0,12,2,44:177,11,0,12,2,44 0/1:0,0,3:3:PASS:34:.:.:94,0,388,34,38,304:94,0,388,34,38,304 0/2:15,0,2:17:lowGQ:18:0|1:20199249_CT_C:18,64,695,0,632,624:18,64,695,0,632,624 1/1:0,0,0:0:lowGQ:8:.:.:133,8,0,101,17,265:133,8,0,101,17,265 0/2:3,0,0:3:PASS:25:.:.:129,25,484,0,121,94:129,25,484,0,121,94 0/2:2,0,0:2:PASS:38:.:.:185,38,644,0,88,42:185,38,644,0,88,42 0/2:2,0,0:2:lowGQ:14:.:.:256,14,293,0,57,41:256,14,293,0,57,41./.:11,0,0:11:PASS 1/2:0,0,1:1:lowGQ:14:.:.:115,24,14,36,0,359:115,24,14,36,0,359 1/2:0,0,1:1:PASS:28:.:.:188,39,28,35,0,206:188,39,28,35,0,206 2/2:0,0,3:3:lowGQ:8:1|1:20199249_CT_C:88,88,89,8,9,0:88,88,89,8,9,0

Why are some genotypes being passed when there is no support for their genotype? Why are the Mendelian error rates so high?

Thank you very much in advance,
Alva


Viewing all articles
Browse latest Browse all 624

Latest Images

Trending Articles



Latest Images